
Segmented Eratosthenes Sieve
Algorithm

I. Abstract.. 1

II. Introduction... 1

III. Design of algorithms... 1

IV. Phases of Development... 2

V-Complexity... 4

VI-Performance.. 5

VII-Diagrams and Tables... 5

VII-Conclusion.. 6

IX-References... 6

I. Abstract

The Eratosthenes Sieve algorithm stores an array to represent the primality of each integer. In order to
optimize the sieve, the primality of each integer can be stored as a single bit. Also, reusing a smaller array to
represent segments of the numbers to be sieved reduces memory.

II. Introduction

The Eratosthenes Sieve creates an array of numbers from 2 to N. Iterating through the list, each number, if not
already marked composite, is marked as a prime. Then, all multiples of that number are marked composite.
Normally, the algorithm is limited by the available memory. However, much larger sieves can be run if the
algorithm is segmented.

III. Design of algorithms
The sieve can be optimized by excluding even numbers since all even numbers excepting 2 are composite. The
first item in the array represents 3, the second, 5 and the third, 7. This reduces memory by a half because the
array representing the numbers will be size N/2 instead of N.

elizabeth
Typewriter
Author: Ricson Cheng 11th Gradericsoncheng@gmail.com Date of Completion: May, 2014

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter

elizabeth
Typewriter
Advisor : Elizabeth MabreyDirector of Storming Robotsemabrey@stormingrobots.com

elizabeth
Typewriter

mailto:emabrey@stormingrobots.com

If composite C has factors A and B, at least one of A or B must be at least the square root of C. Otherwise, since
sqrt(C) > A and sqrt(C) > B, then sqrt(C)*sqrt(C) > A*B, then C > A*B, a contradiction. Therefore, sieving with
primes up to sqrt(N) as opposed to N is sufficient.

Each byte is composed of eight bits. Typically, an integer takes 4 bytes, or 32 bits, and a char, 1 byte, or 8 bits.
By storing a boolean value in each bit of an integer, we can use one integer to store whether 32 integers are
prime or not prime.

Even with these optimizations, for large N, it may be impossible to fit the entire array into memory. A
segmented sieve allows for this.

In the segmented sieve algorithm, the array of primes that serve as the sieve are created with the traditional
sieve. Another integer array is created; this is used to represent each segment. Finally, since the prime 3 will
sieve out elements 1, 4, 7, … in the array [1, 3, 5, 7, 9, 11 …] but the elements 2, 5, 8, ... in the array [101, 103,
105, 107, 109, 111 …], a third array is required to store the position of the first multiple of a given prime in the
segment.

Each bit in each integer in the segment represents an odd number. With delta as the size of a segment, a loop
is used to sieve from 0 to delta-1, then delta to 2*delta-1, then 2*delta to 3*delta-1 until reaching k*delta-1
such that k*delta-1 >=N.

For each iteration, the list of primes is looped over. The initial position of each prime is set by the marker array,
then the prime is added over and over to find multiples, which are marked as composite. When next multiple
of the prime is greater than delta, the loop terminates and the next prime is used to sieve. After each segment
is sieved, the number of primes in the array is counted and then the array is cleared.

Since delta may not evenly divide N, during the last segment, any bits past N are cleared before the primes are
counted.

IV. Phases of Development
define np(list, len)

count = 1
for x from 0 to len-1

if list[x] is true
count += 1

return count

define sieve(n)

isprime = array[n*sizeof(char)]
for x from 0 to n-1

if x is even
isprime[x] = false

else
isprime[x] = true

isprime[0] = false
isprime[1] = false
for x from 3 to n-1 by two

cutoff = n/x-x
for i from 0 to cutoff-1 by two

isprime[x*(x+i)] = false
return isprime

define nsieve(n)
return np(sieve(n),n)

First start with the conventional implementation of the
sieve.

The sieve function first creates an array. After all the
even numbers and 0 and 1 are set to false, a loop is
used to iterate through. Then, the np function counts
the number of primes in the array.

define endremove(limindex, delta, isprime)
for m from limindex to delta/2

isprime[m] = 0

bpi = size(integer)*8

define clearbit(arr, num)
index = num/bpi

define segment(numprimes, pplace, delta, isprime, ps)
for j from 0 to numprimes-1

marker = pplace[j]
while marker < delta/2

isprime[marker] = 0
marker += ps[j]

marker -= delta/2
pplace[j] = marker

define pcount(isprime, delta, count)
for k from 0 to delta

if isprime[k]
count +=1
isprime[k] = 0

define segsieve(max)
count = 0
sqrtmax = sqrt(max)
delta = (1.5*sqrtmax/2)*2
j = sieve(sqrtmax)
numprimes = np(j,sqrtmax)
ps = array[(numprimes-1)*sizeof(int)]
d = 0
c = 0
while d < numprimes -1

if j[c] is True
ps[d] = c
d += 1

c += 1
pplace = array[(numprimes-1)*sizeof(int)]
for i from 0 to numprimes-2

pplace[i] = 3*ps[i]/2
delete(j)
isprime = array[delta/2]
set delta/2*size(integer) bytes of isprime to -1
limindex = ((max%delta)/2)/bpi+1
mloop = (max+1)/delta+1
for i from 0 to mloop-1

segment(numprimes, pplace, delta, isprime,
ps)

if i == mloop-1
endremove(limindex, delta,

isprime)
pcount(isprime, delta, count)

return count

define primesieve(n)
if n < 10000

return nsieve(n)
else

return segsieve(n)

bitnum = num%bpi
arr[index] &= ~(1 << bitnum)

define endremove(limbit, limindex, delta, isprime)
for m from limindex to delta/bpi/2

isprime[m] = 0
for n from limbit to bpi

isprime[limindex-1] &= ~(1 << n);

define segment(numprimes, pplace, delta, isprime, ps)
for j from 0 to numprimes-1

marker = pplace[j]
while marker < delta/2

clearbit(isprime, marker)
marker += ps[j]

marker -= delta/2
pplace[j] = marker

define pcount(isprime, delta, count)
for k from 0 to delta/bpi/2

for m from 0 to bpi
if isprime[k] & (1 << m)

count += 1
isprime[k] = -1

define segsieve(max)
count = 0
sqrtmax = sqrt(max)
delta = (1.5*sqrtmax/bpi/2)*bpi*2
j = sieve(sqrtmax)
numprimes = np(j,sqrtmax)
ps = array[(numprimes-1)*sizeof(int)]
d = 0
c = 0
while d < numprimes -1

if j[c] is True
ps[d] = c
d += 1

c += 1
pplace = array[(numprimes-1)*sizeof(int)]
for i from 0 to numprimes-2

pplace[i] = 3*ps[i]/2
delete(j)
isprime = array[delta/2/bpi*sizeof(int)]
set delta/16 bytes of isprime to -1
limbit = ((max%delta)/2)%bpi+1
limindex = ((max%delta)/2)/bpi+1
mloop = (max+1)/delta+1
for i from 0 to mloop-1

segment(numprimes, pplace, delta, isprime,
ps)

if i == mloop-1
endremove(limbit, limindex, delta,

isprime)
pcount(isprime, delta, count)

return count

define primesieve(n)
if n < 10000

return nsieve(n)
else

return segsieve(n)

Because all the nonprimes less than n must have at
least one factor equal to or less than sqrt(n), the
segsieve function uses the sieve function to get the
primes from 1 to sqrt(n) and stores them in an array.

The delta variable is used to determine the size of
each segment. Since even numbers are to be
skipped, delta is made divisible by two. If delta is

Define bpi to be the number of bits in each integer.

Because we use every single bits in each integer, we
must also let delta be divisible by the number of bits.

In additional to limindex, which marked the index
boundary of the sieve, limbit is used the mark the bit
position of that boundary.

made too small, extra looping reduces performance,
so delta is made to be 50% larger than the largest
prime used to sieve.

In the case that n is not divisible by delta, we
compute limindex to be the index after which the
counting should be truncated.

The pplace variable is used to keep track of the
offsets of the primes. When the segment represents
the integers from 0 to 7, the prime three would start
at index 0. When the segment represents the
integers from 8 to 15, the prime three would start at
index 1 since 9 is divisible by 3

The main loop calls segment. Each prime is looped
over the segment starting from the marker stored in
pplace, then those integers in the array are set to 0.

pcount is used to add up all the primes in the
segment.

If the loop is on it’s last iteration, endremove is used
to truncate all values beyond the boundary of the
sieve.

Because the overhead involved makes a segmented
sieve slower at small numbers, below 10000, a
normal sieve is used instead.

In segment, the function clearbit is called to set the
specific bit to zero.

The pcount function loops over both the integers in the
segment, and the bits in each integer. After each inner
loop, the integer is set to -1 which sets all the bits in
the integer to 0.

V-Complexity

It may be possible to increase performance of the sieve by changing the segment array type from integer to
short, long, long long, or char.

It is not important to optimize the traditional sieve that generates the original primes because it only sieves up
to sqrt(N). For any large N, the first sieve is an insignificant portion of the running time.

The size of each segment, delta, can significantly affect performance. Very small values of delta, like 32 or 64,
use less memory but reduce performance because large amounts of extraneous looping must be done. Large
values of delta reduce the amount of computations needed when keeping track of the prime multiples but
require more memory. A typical delta used might be several times sqrt(N).

VI-Performance

Compiler: Visual Studio Express 2012 /O2

Machine: i7-3632QM at 3.2 GHz 1333MHz, DDR3

segmented segmented unsegmented unsegmented

N min (s) max (s) min(s) max(s)

1E5 0.000 0.001

1E6 0.003 0.004
1E7 0.035 0.036
1E8 0.354 0.371
1E9 3.526 3.605
1E10 35.895 36.475

1E11 362.267 377.089

1E12 3763.015 3769.901

1E13 38564.199 40154.638

VII-Diagrams and Tables
Segment function

Checking a bit

Segsieve function

VII-Conclusion

By utilizing every bit in an integer, and by segmenting the numbers to be sieved, the eratosthenes sieve can be
extended to much larger numbers while using less memory. Future work may further optimize the sieve by
setting a variable delta which adjusts to memory constraints and prime size. The segmented sieve is
embarrassingly parallel, and multiprocessing should be able to improve performance.

IX-References

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Clearing a bit

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

